El deseo de medir y de cuantificar el cambio, la variación, condujo en el siglo XVII hasta la noción de derivada.
El estudio de las operaciones con derivadas, junto con las integrales, constituyen el cálculo infinitesimal. Los introductores fueron Newton y Leibnitz, de forma independiente. Los conceptos son difíciles y hasta bien entrado el siglo XIX no se simplificaron. A ello contribuyó la aparición de una buena notación, que es la que usaremos. Las aplicaciones prácticas de esta teoría no dejan de aparecer.
1. Tasa de variación media
Incremento de una función
Sea y = f(x) y a un punto del dominio de f. Suponemos que a aumenta en h, pasando al valor a +h, entonces f pasa a valer
f(a +h), al valor h se le lama incremento de la variable, y a la diferencia entre f(a +h) y f(a) el incremento de la función.
Tasa de variación media

[a, b] al cociente entre los incrementos de la función y de la variable, es decir:
T.V.M. [a, b] = 

Ejemplo 1. Halla la tasa de variación media de la función
f(x) =3-x2 en el intervalo [0,2]
Solución
T.V.M. [0, 2] = 

Ejercicio 1. Calcular b para que la tasa de variación media de la función f(x) = ln(x+b) en el intervalo [0,2] valga ln2.
0 comentarios:
Publicar un comentario